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ABSTRACT 

Let K be the rational field Q or a complex quadratic number field other than 
Q(x/--~-3). Let L be a normal three-dimensional field extension of K. If R and 
S are the rings of algebraic integers of K and L respectively, then the Amitsur 
cohomology group H2(S/R, U) is trivial. Inflation and class numbers give in- 
formation about cohomology arising from certain nonnormal cubic extensions. 

1. Introduction 

As in [4] and [5], we are interested in the Amitsur cohomology group H2(S/R, U) 
arising from an extension R c S of rings of algebraic integers. Although this group 

is finite and a bound can be given for its order [4, Prop. 2.1], it has been computed 

only in case R=Z and S is quadratic (see [7] and [5]). In this paper, we pursue 

further the method of [5] and study H2(S/R,U) by means of its subgroup 

HI(S/R, UK/U). We begin in Section 2 with some cocycle computations. These 

are used in the proof of the main technical result, Theorem 3.2, which involves the 

structure of the group U(R) of units of R and the Galois theory of the extension 

K c L of quotient fields of R and S. As an application, Theorem 4.1 asserts 

H2(S JR, U) = 0 in case L/K is three-dimensional normal and K is either Q or a 

complex quadratic other than Q ( x / -  3). As explained in Example 4.3, the inflation 

results of [4] and [5], in conjunction with class number tables, can then be used 

to infer vanishing of H2(S/Z, U) for several nonnormal cubics L~ Q to which 

the criterion in [4, Remark 4.3] fails to apply. 
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We employ the standard terminology concerning Amitsur cohomology and 

assume familiarity with the methods and notation of [5]. 

2. Odd-dimensional extensions 

The standing hypotheses for this section are that R is a domain with quotient 

field K, that S is a flat R-subalgebra of a field extension L of  K and that multi- 

plication induces an isomorphism S | ~ L. 
1 t 

As usual, write Lt= @ L and S t = @ S. Since flatness allows us to view 
K R 

s i c  L t, we may identify the i-th cochain group of the Amitsur complex 

C(S /R, UK / U) with U(L t + 1) / u(st+ 1). In particular, if we define 

C(S, R) = {~ E U(L 2) : d'(~) e U(S a) ~ U(La)} 

where d* is the coboundary map of C(L/K, U), then the first cocycle group of 

C(S/R, UK/U) is {~" U(S2):~C(S ,R)} .  For ~ C ( S , R ) ,  let [4] denote the 

cohomology class of ~ �9 U(S 2) in H~(S/R, UK/U). Finally, let t : L 2 ~ L 2 be the 

K-algebra isomorphism satisfying t(x | y) = y @ x. 

PROPOSITION 2.1. Let ~ E C(S,R). Then t(O ~ C(S,R) and ~t(~)e U(S2). Hence 

[r = - [ t ( r  

PROOF. Let ~ = E ~i @ fit. Then 

d l ( O  = 

= ( ~ 1 | ~t | fli) ( ~ ~i | 1 | ill)- I( E gi | fli | i) ~ U(S 3) c U(L3). 

Let k be the twist homomorphism L 3 ~ L a given by k(x | y | z) = z | y @ x. 

Since k(S 3) c S 3, we have k(dl(~)) = e2(t(O)el(t(~))- leo(t(e)) = dl(t(~))~ U(Sa); 

i.e., t (0  ~ C(S,R). 

Next, apply the contraction homomorphism c : L 3 ~ L 2, given by c(x @ y @ z) 

= x z |  to d1(~) to get t(~)( ~ otifli| U(S2). However, 

applying the contraction L a ~  L to d~(O shows ~, ~ifli~U(S). Hence 

ctfli | 1 ~ U(S2), and so ~t(~) ~ U(S2). Finally, [4] = - [t(~)] since 

[4] -I- It(C)] = [~t(r = 0. 

COROLLARY 2.2. Assume that L is an odd-dimensional Galois extension of 
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K and that S is the integral closure of R in L. Let ~ �9  Then [~] = 0 

there exists l �9 U(L) such that ~(t(0 ) -  1(1 | l -  1) �9 U(S2). 

PROOF. By E5,Th. 3.8], [ L : K ] 2 E r  Since EL:K] z is odd, E r  

*~ 2[r = 0 r [r = - [~] = It(O] r [~(t(~))- 1] = 0 ~- there exists l �9 U(L) such 

that ~(t(~))- 1(I | l-  1) �9 U(S2). 

3. Vanishing of cohomology 

The standing hypotheses for this section are that R is a domain with quotient 

field K, that L is a (finite) n-dimensional Galois field extension of K with Galois 

group G, and that S is the integral closure of R in L. 

PROVOSmON 3.1. Assume that R is integrally closed, S is a flat R-module 

and G is cyclic. Then: 

i) There is an exact sequence of abelian groups O ~  X ~ HI(S/R,  UK/U) 

.-. U(R)/N(U(S)), where N is the field norm U ( L ) ~  U(K) and X satisfies 

n . X = O .  

ii) Assume that for every r � 9  U(R), there exists a positive integer m which 

is relatively prime to n and satisfies r" = 1. Then n �9 HI(S /R, UK /U) = O. 

PROOF. (i) Since R is integrally closed, the multiplication map S | K ~ L is 

art isomorphism. The proof of [5, Th. 3.8] therefore provides an exact sequence 

0 ~ X ~ Hi(S/R,  UK[U) ~ HI (S /R , (UK/U)  ~ with n" X = 0 .  However [5, Th. 

3.1] embeds HI(S/R, UK/U) ~ in the group cohomology group HI(G,(UK/U)(S)) 

= Hi(G, U(L)/U(S)) which, by Hilbert's Theorem 90, itself embeds in H2(G, U(S)) 

via the connecting homomorphism. As U(S) a = U(R), the usual computation of 

cohomology for a cyclic group shows H2(G, U(S)) = U(R)/N(U(S)), and (i) is 

proved. 

ii) Since n 2 �9 Hi(S/R,  UK/U) = 0 by [5, Th. 3.8], the hypotheses of (ii) imply 

that the composition HI(S /R, UK /U) ~ HI(S /R, (UK /U) ~ ~ U(R) /N(U(S)) is 

the zero map. Hence HI(S/R,  U K / U ) =  X, and (ii) follows from (i). 

THEOREM 3.2. Assume that R is integrally closed, S is a flat R-module, n = 3 and 

U(R) is a torsion group with no element of order 3. Then H 1 (S / R ,  

V K lU)  = o. 
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PROOf. Let ~ �9 C(S, R). We must show [~] = 0. 

Let r  • ~@fl i  and G = { 1 , g ,  g2}. Under the isomorphism 

I]  U(L)= U(L) x U(L) x U(L), let ~ be sent to (a, b, c); i.e. 
G 

U(L 2 ) 

a = E ~ifli, b = E otig(fli) and c = Z cqg2(fli). 

Now under the algebra isomorphism La-~ l-[ L, 
G 2 

dl(~) = (  Z l@ai@fl~)(  Z a~@ 1 @ f l i ) - l (  Z ~q@fl~@ 1) 

corresponds, after some computation, to (a, a, a, g(a), bg(b)c-1, bg(c)a-1, g2(a), 

g2(b)ca-1, cg2(c)b-i). Since G maps S into itself and d l ( 0 e  U(SZ), it follows 

that each of the entries of this nine-tuple lies in U(S). 

As above, let N be the field norm U(L) ~ U(K). Since a e U(S), multiplying the 

fifth and eighth entries of the above nine-tuple shows 

N(b) = bg(b)gZ(b) �9 U(S) ~ K = U(R). 

Considering the sixth and ninth entries shows N(c) E U(R). 

Case 1. N(b) = N(c). We shall apply the criterion in Corollary 2.2. Since 

N(g(c)) = N(c) = N(b), Hilbert's Theorem 90 provides I e U(L) such that g(c)b- 1 

= lg(l)- 1. Then cg2(b) - 1 = g2 (g (c) b - i )  = g2 (1) l-1. Since t(~) corresponds 

to the triple (a, g(c), g2(b))el-I U(L), we see that ~t(O-1 (l @1-1) corresponds to 
G 

(1, bg(c)-llg(l) -~, cg2(b)-~lg2(l) -~) = (1, 1, 1). Hence ~t(r @ 1 -z) = 1 

U(S 2) and [~] = 0. 

General case. As U(R) has no element of order 3, every element of  U(R) has 

order relatively prime to 3. Then Proposition 3.1 (ii) implies 3 "HI(S/R, UK/U) 

= 0. In particular, [~3-] = 3[~] = 0, and so there exists l E U(L) such that 

09 = Ca(l @ 1-1) e U(S2). 

Choose positive integers p and q, each congruent to 1 modulo 3, such that 

N(b) 3p+1 = 1 = N(c) 3q+1. (For example, if the order v(b) of N(b) is congruent 

to 1 (resp., 2) modulo 3, take p so that 3p + 1 = v(b), (resp., 3p + 1 = 2v(b)).) If  

m = p + q + 3pq, then N(b) 3m+1 = 1 = N(c) 3ra+l . 

Since co"E U(S2), we see that w"~ ~ C(S, R) and [tom~] = [~]. Observe that 

o9"~ corresponds to the triple (a 3m+ 1, ban,+ l(l#(/)- 1)m, cam+ l(ig2(l- 1))m). However 
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N(b3m+l(Ig(l-1)) m) = 1 = N(cam+l(Ig2(l-1)) m) and Case 1 applies to show 

[o~m~] = 0. Hence [r = 0, completing the proof. 

COROLLARY 3.3. Assume that R is Dedekind, n ~ 3 and U(R) is a torsion 

group with no element of order 3. Then the canonical map 1-3] from H2(S/R, U) 

to the split Brauer group B(S/R) is a monomorphism. 

PROOF. It is well-known that R is (itttegrally dosed) regular and S is a module- 

finite faithful projective (flat) R-algebra. Theorem 3.2 and I5, Corollary 1.5] 

therefore apply, and complete the proof. 

4. Applications 

We begin by applying Corollary 3.3 to rings of algebraic integers. 

THEOREM 4.1. Let K be the rational field Q or a complex quadratic number 

field other than Q( ~ / -  3). Let L be a normal three-dimensional field extension 

of K. I f  R and S are the rings of algebraic integers of K and L respectively, 

then H2(S/R, U) = O. 

PROOF. We may apply Corollary 3.3 since L / K is Galois, R is Dedekind and the 

order of U(R) is either 2 or 4. Hence H2(S/R, U) ~ B(S/R) is a monomorphism. 

A well-known applicatiort of global class field theory asserts that B(S/R) vanishes, 

since it is annihilated by both 2 and [L:K]  = 3. Thus, H2(S/R, U)= O. 

THEOREM 4.2. Let L be a nonnormal three-dimensional field extension of Q, 

F a normal closure of L/Q, and K the unique quadratic subfield of F. Let R, S 

and T be the rings of algebraic integers of K ,L  and F respectively. Then: 

i) L = Q(g) for some root c~ of x 3 + px + q ~ Q[x]. I f  D = - 4 p  3 - 27q 2, 

then K = Q(x/O). 

ii) The order of H2(S /Z, U) divides 3216. 

iii) There exist monomorphisms H2(S/Z, U) ~ HZ(T/Z, U) and H2(T/Z, U) 

n~  /R, Pic). Hence, the orders of H2(S /Z, U) and H2(T /Z, U) each divide 

the class number of T. 

iv) Assume that D < 0 and K # Q ( x / -  3). Then there is an exact sequence 

0 ~ HI(T/R,  U) ~ Pic(R) ~ H~ ~ O. Hence, the orders of H2(S/Z,U) 
and H2(T /Z, U) each divide the class number of R. 



218 D. DOBBS Israel J. Math., 

PROOF. As L[Q is not normal, I F : L ]  = 2 and Gal(F/Q)= S3, the unique 

nonabelian group of order 6. Since $3 has but one subgroup of index 2, Galois 

theory implies F has a unique quadratic subfield K. 

i) By the primitive element theorem, L = Q(~) for some root ~ of an ir- 

reducible monic polynomial f(x) ~ Q[x]. By a linear substitution, we may assume 

f(x) = x 3 + px + q. As L/Q is nonnormal, it is well-known that 

D = - 4p a - 27q 2 

is not the square of a rational number. To establish (i), it therefore suffices to 

show ~/D ~ F. 

Let fl and ~ be the other roots of f(x) in F. Since ct 3 + pet = f13 + pfl( = _ q) 

and ct ~ fl, we have ~2 + f12 + ~fl + p = 0, and an application of the quadratic 

formula yields x / -  3~2 - 4p ~ F. Similarly ~ / -  3fl 2 - 4p and ~ / -  3~ 2 - 4p lie 

in F. By using the algorithm that expresses symmetric functions in terms of elemen- 

tary symmetric functions, we find ( - 3~ 2 - 4p)( - 3fl 2 - 4p)( - 3? 2 - 4p) 

= - 27q 2 - 36p 3 + 96p 3 - 64p 3 = D, and (i) is proved. 

ii) As the multiplicative group of roots of unity inside T is cyclic, the 

Dirichlet unit theorem implies that U(T) can be generated by at most 1 + 5 = 6 

elements. Then [4, Prop. 2.1] shows H2(S/Z, U) is a finite group of order at most 

3 (6(31)2)= 3216. However H2(S/Z,U) is 3-torsion [-1, Th. 6] and, hence, has 

order a power of 3, thus proving (ii). 

iii) By [4, Remark 3.3] or [5, Th. 2.7], the kernel of the inflation map 

inf: H2(S/Z, U) --, H2(T]Z, U) is annihilated by 4. Since H2(S/Z, U) is 3-torsion, 

inf is a monomorphism. 

Since Q has but one real place, global class field theory implies that the Brauer 

group B(Z) = 0. As Pie (Z)= 0, the Chase-Rosenberg exact sequence [3, Th. 7.6] 

therefore shows H2(T /Z, U) _~ n~ /Z,Pic). Since H~ /Z,Pic) c H~ /R,Pic) 

c Pic (T) and the class number of T is the order of Pic(T), (iii) now follows. 

iv) Since D < 0, (i) shows K is complex. As K # Q ( x / -  3), Theorem 4.1 

implies H2(T/R, U ) =  0. Then (iv) follows readily from (iii) and the Chase- 

Rosenberg exact sequence. 

EXAMPLE 4.3. Let S be the ring of algebraic integers of the cubic number 



Vol. 14, 1 9 7 3  COHOMOLOGY OF CUBIC EXTENSIONS 219 

field L generated over Q by a root of the irreducible polynomial x 3 + px + q 

----- x 3 + 6x + 6 (resp., x 3 + 6x + 1, x 3 + 7x + 7, x 3 - 3x + 8, x 3 + 6x + 8). Now, 

L/Q is not normal (since - 4 p  3 - 2 7 q  2 is not the square of a rational number) 

and S has class number 3 (see the tables in [8]). Moreover, the criterion in [4, 

Remark 4.3] gives no information about H2(S/Z, U). However, using Theorem 

4.2 (i), we see that the related quadratic field is K = Q(x/ - m) where m = 51 

(resp., 11,55,5,2). From tables in [2], the class number of the algebraic integers 

of K is 2 (resp., 1,4, 2, 1). Apply Theorem 4.2 (ii) and (iv) to conclude H2(S/Z, U) 

-----0. 

There are cases not resolved by Theorem 4.2 (iv), however. For example, the 

ring of algebraic integers arising from a root of x 3 + 4x + 6 and the ring of 

algebraic integers of the corresponding quadratic Q ( x / -  307) each have class 

number 3. 

EXAMPLE 4.4. In view of the preceding examples, it seems worthwhile to 

observe some applications of [4, Remark 4.3] which do not follow from Theorem 

4.2 (iv). 

a) First, take p = 4 and q = 1 (in the notation of Theorem 4.2). Then S has 

class number 2 [8, p.76] and, since B(Z) = 0, [4, Remark 4.3] implies H2(S/Z, U) 

---0. Note that Theorem 4.2 (iv) does not yield this information, since 

K = Q(,] - 283) and tables in [2] show that the class number of R is 3. 

b) For a noncubic application, let R c S be the rings of algebraic integers of 

subfields K c L of the cyclotomic field F generated (over Q) by a primitive 

2m-th root of unity. Then the canonical map H2(S/R, U) ~ B(S/R) is a monomor- 

phism. For the proof, let T be the ring of algebraic integers of F. By [9, Satz C, 

p. 244], the class number of T is odd, However [6, Satz, p. 93] shows that the 

class number of S divides that of r and, hence, is also odd. Since [L : K]I[F : Q] 
= q~(2 m) = 2"-1, [4, Remark 4.3] applies to complete the proof. 
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